Potentiation of opioid analgesia in dopamine2 receptor knock-out mice: evidence for a tonically active anti-opioid system.

نویسندگان

  • M A King
  • S Bradshaw
  • A H Chang
  • J E Pintar
  • G W Pasternak
چکیده

Dopamine systems are intimately involved with opioid actions. Pharmacological studies suggest an important modulatory effect of dopamine and its receptors on opioid analgesia. We have now examined these interactions in a knock-out model in which the dopamine(2) (D(2)) receptor has been disrupted. Loss of D(2) receptors enhances, in a dose-dependent manner, the analgesic actions of the mu analgesic morphine, the kappa(1) agonist U50,488H and the kappa(3) analgesic naloxone benzoylhydrazone. The responses to the delta opioid analgesic [d-Pen(2),d-Pen(5)]enkephalin were unaffected in the knock-out animals. Loss of D(2) receptors also potentiated spinal orphanin FQ/nociceptin analgesia. Antisense studies using a probe targeting the D(2) receptor revealed results similar to those observed in the knock-out model. The modulatory actions of D(2) receptors were independent of final sigma receptor systems because the final sigma agonist (+)-pentazocine lowered opioid analgesia in all mice, including the D(2) knock-out group. Thus, dopamine D(2) receptors represent an additional, significant modulatory system that inhibits analgesic responses to mu and kappa opioids.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of the cholinergic and opioid receptor mechanisms on nicotine-induced analgesia

  In this study, we investigated the effect of nicotinic receptor agonists and antagonists on the analgesic response to morphine in the formalin test. In experiments conducted in mice, nicotine produced an early dose-dependent analgesic effect. At a dose of 0.5 mg/kg, mecamylamine, a nicotinic receptor inhibitor, suppressed the analgesic effect induced by 0.1 mg/kg nicotine in both stages of th...

متن کامل

Potentiated opioid analgesia in norepinephrine transporter knock-out mice.

Several studies have shown that activation of alpha(2)-adrenergic receptors (alpha(2)ARs) leads to mild analgesic effects. Tricyclic antidepressants (TCAs), such as desipramine (DMI), which block norepinephrine transporters (NETs), also produce mild antinociception. The coadministration of either alpha(2)AR agonists or TCAs with opiates produces synergistically potentiated antinociception. It h...

متن کامل

Naloxone fails to produce conditioned place aversion in mu-opioid receptor knock-out mice.

There is growing evidence that tonic activity of the opioid system may be important in the modulation of affective state. Naloxone produces a conditioned place aversion in rodents, an effect that is centrally mediated. Previous pharmacological data using antagonists with preferential actions at mu-, delta-, and kappa-opioid receptors indicate the importance of the mu-opioid receptor in mediatin...

متن کامل

Kappa opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses.

Previous studies have demonstrated that stress may increase prodynorphin gene expression, and kappa opioid agonists suppress drug reward. Therefore, we tested the hypothesis that stress-induced release of endogenous dynorphin may mediate behavioral responses to stress and oppose the rewarding effects of cocaine. C57Bl/6 mice subjected to repeated forced swim testing (FST) using a modified Porso...

متن کامل

Nociceptin/orphanin FQ and its receptor--potential targets for pain therapy?

The neuropeptide nociceptin, also called orphanin FQ (N/OFQ), is the endogenous agonist of the N/OFQ peptide receptor (NOP receptor). Both N/OFQ and the NOP receptor share a high degree of homology with classical opioid peptides and opioid receptors, respectively, and use similar signal transduction pathways as classical opioids. The NOP receptor has thus been regarded as the fourth member of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 21 19  شماره 

صفحات  -

تاریخ انتشار 2001